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Chapter 14 

Emergence in multi-agent systems: 
conceptual and methodological issues 

14.1. Introduction 

The notion of emergence has several meanings. In the vernacular language, 
emergence denotes both a gradual beginning or coming forth, or a sudden uprising 
or appearance; to emerge also means to become visible; for example, emergence 
may denote the act of rising out of a fluid. This latter sense is close to its Latin roots, 
where emergere is the opposite of mergere: to be submerged. In what follows, we 
relate the “act of rising out” to the arising of some phenomenon from a process, and 
note the fact that to become visible presupposes some observer. So, the common 
sense of emergence is linked with the meaning of a process that produces some 
phenomenon that might be detected by an observer. 

The concept of Emergence first discussed in philosophy, is also widely used in 
complex adaptive systems literature, especially in computer sciences [HOL 98] and 
related fields (multi-agent systems, artificial intelligence, artificial life...) as well as 
in physics, biology, and cognitive sciences. In a pioneering book on artificial society 
and multi-agent simulations in social sciences, Nigel Gilbert put the emphasis on 
“emergence” as a key concept of this approach: “Emergence is one of the most 
interesting issues to have been addressed by computer scientists over the past few 
years and has also been a matter of concern in a number of other disciplines, from biology to 
political science” [GIL 95b, p.8]. Later, [GIL 02] discussed the varieties of emergent 
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 phenomena by developing Schelling’s Model of residential segregation as a case study. He 
put the emphasis on methodological problems linked with emergence in artificial society, 
such as social recognition, construction of categories, second order emergence and downward 
causation. These latter terms concern the process through which the macro-level 
emerging social structure “feedbacks” into the micro-level by re-shaping the 
“elementary” behaviour (also called “immergence” by [GIL 95a]. According to 
[CAS 98a], [CAS 98b] such a downward social determination is linked with 
cognitive agents: the agents' minds: works as cognitive mediators for the social action 
[CAS 00]. From a methodological point of view, emergence provides therefore 
concepts that allow us to encompass both holism and a reductionist version of 
methodological individualism. For instance, Sawyer, starting from a discussion of 
the emergentist approaches in philosophy, psychology and sociology [SAW 01a], 
[SAW 02a] advocates a “non-reductive individualist” approach of emergence 
[SAW 02b], [SAW 03], that allows us to understand societies as complex systems 
[SAW 04], [SAW 05].  Unfortunately, these approaches remain mainly at the 
conceptual level and do not develop a formal framework both operative in multi-
agent frameworks and that could be linked in some way with more traditional 
models. This latter requirement allows us to make comparative appraisal and to 
provide an account of how emergence could effectively break new ground and 
support new conceptual and formal advance. Such an assessment would be easier 
with the models of the economics side (Agent based Computational Economics - 
ACE) which can be more easily related with traditional formalisms. This is the case 
for instance of the ACE model of ([AXT 01] – hereafter: AEY) which is an 
extension of a population game by [YOU 98]. 

The first section raises critical questions about emergence from two paradigmatic 
examples of emergent phenomenon resulting from local social interaction 
(Schelling’s model of Segregation and the RY model of emergence of classes). The 
second section briefly reviews and discusses some conceptual or formal definitions 
of emergence from both Philosophy and Computer sciences, with a special attention 
for multi-agent systems [MUL 04]. The third section provides a complementary 
definition proposed by [BON 97] and discussed in [DES 05], [DES 07] to be 
operative in multi-agent frameworks and to make sense from both a cognitive and a 
social point of view. This definition is coherent with important related features, like 
cognitive hierarchy, detection, and complexity 

14.2. Emergence as a bottom-up process in a multi-agent framework 

In ACE and Computational Social Sciences as well, emergence is strongly 
related to the Santa Fe Approach to Complexity (SFAC). SFAC calls “emergence” 
the arising at the macro level of some patterns, structures and properties of a 
complex adaptive system that are not contained in the properties of its parts. 
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Interactions between parts of a complex adaptive system play a key role in both 
complex dynamics and emergence. An interesting part of the emergence process 
concerns the forming of some collective order (coherent structures or patterns at the 
macro level) as a result of the agents’ interactions within the system’s dynamics. 
The two following cases are paradigmatic examples for the occurrence of a 
collective order from the agents’ interactions. Both examples provide the basis for 
raising questions about the nature of emergence. 

14.2.1. What does emerge in Schelling’s model of Segregation? 

Schelling's model of spatial segregation [SCH 69] [SCH 78] introduced by 
Gilbert in Chapter 5 and extensively studied by Daudé and Langlois in Chapter 13 is 
a pioneering example of an emerging phenomenon resulting from local social 
interaction. Schelling's aim was to explain how segregationist residential structures 
could spontaneously occur, even when people are not so very segregationist 
themselves. The absence of a global notion of segregationist structures (like the 
notion of ghettos) in the agent's attributes (preferences) is a crucial feature of this 
model. Agents do not choose between living or not living in a segregationist 
structure, but have only local preferences concerning their preferred neighbourhood. 
Moreover, people have only a weak segregationist behaviour, but the game of 
interactions generates global segregation. 

Under Schelling's behavioural assumption, the “fully integrated structure” 
(where agents of different colours alternate in all directions) is an unstable 
equilibrium. A slight perturbation is sufficient to induce a chain reaction and the 
emergence of local segregationist patterns. Local interactions are sufficient to 
generate spatial homogeneous patterns. Then, spatial segregation is an emerging 
property of the system's dynamics, while not being an attribute of the individual 
agents. Sometimes, local integrated (non-homogeneous) patterns may survive in 
some niches. But such integrated structures could be easily perturbed by random 
changes, while homogeneous structures (frozen zones) are more stable1. 
Independently of the question of the empirical relevance of Schelling’s model (see 
[SUG 02] and Appendix 2), this pioneering work is generally viewed as a 
paradigmatic example of the first generation of agent-based models, producing 
macro-social effects from the bottom-up [GIL 02]. However, some fundamental 
questions about the emergence properties of this model remain unresolved. We 
claim that the presence of an external observer being able to discern emergent 
phenomena and levels of organization is unavoidable. Accordingly, who is this 

                              
1 Complementary theoretical developments on Schelling's model of segregation can be found 
in the growing literature on this subject (see [DES 05] for further references) 



observer? From the point of view of Social sciences, what does the higher level of 
organization consist in? For whom does this level make sense? (Figure 14.1). 

 
Source: [DES 05] 

Figure 14.1: The questions of emergence in the Social Sciences 

For the observer (i.e. the computational social scientist) this collective order 
makes sense by itself and opens up a radically new global interpretation, because 
this does not initially make sense as an attribute of the basic entities 

14.2.2. Emergence of “classes” in the ACE model of Axtell, Epstein and Young 

This model is a “random pair wise” type of population game [YOU 98], [BLU 
97] with linear trembling hand. That is to say, Nash equilibrium can be reached 
without any assumption about common knowledge. Early analytical results can be 
found in [YOU 93]. During the game, agents are randomly paired and at each time 
step play a “one-shot” game with their opponent. 

Agents choose the strategy which is their best response according to their beliefs 
(mixed strategy) about the behaviour of the others, drawn by induction from a 
distribution of observed strategies kept in a finite memory of size m. At each time 
steps, agents change partners and update their beliefs according to the result of the 
last meeting. Agents have a linear positive probability of deviation (trembling hand). 
The formal context is thus stochastic and the concept of stability used by the authors 
is due to Foster and Young [FOS 90] for stochastic evolutionary games. 

The one-shot negotiation between pairs of agents is drawn from the one step 
Nash bargaining model. That is to say, each player tries to share a “cake” of size 100 
with its opponents by opting for one of three possible strategies: “High” (H), 
“Medium” (egalitarian) (M), and “Low” (L). The corresponding percentages of the 
cake claimed by players can be fixed, without loss of generality, to 70%, 50% and 
30% respectively. Only the couples of proposals which total is less or equal to 100 
are accepted, other couples of strategies leading to null payoffs.  

For whom does this make sense? 

Where is this level of organization? 

Who is observing? 
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 S2 = H S2 = M S2 = L 

S1 = H (0,0) (0,0) (70,30) 

S1 = M (0,0) (50, 50) (50,30) 

S1 = L (30,70) (30,50) (30,30) 

Player 1 in lines, player 2 in columns 

Figure 14.2: Nash bargaining game: best reply equivalent matrix for a bilateral game of 
agent 

The authors distinguish three situations. First, there are three situations where the 
agents' payoff is null and consequently highly inefficient (because they asked for 
more than 100% of the whole). Second, there are three situations where the whole 
cake is allocated: three Nash equilibria in pure strategy, with one equitable balance - 
(M, M) - and two inequitable ones (H,L), (L,H). Third, there are three inefficient 
outcomes where both payers have positive payoffs but not the whole cake is 
allocated. 

The frequency of the strategies played within the population is given by a triplet 
σ = (p, q, 1−p−q), and each agent infers its expected payoff from a historical sample 
of size m, as:  σim = (pi, qi, 1−pi−qi).  At each time step, randomly paired agents play 
their best response against their own expected mixed strategy σim with a probability 
(1-ε) and play at random with a probability  ε  linear trembling hand “à la Young”. 
When playing, an agent observes the strategy of its opponent and updates its belief 
by removing from its memory the oldest value and by updating its list including the 
last strategy observed. The state of belief of an agent can be represented by a point 
on the simplex of size 2 used to represent the expected mixed strategies of this game 
(Figure 14.3). 

The initial beliefs can be initialized in a random way, or in a targeted zone. But 
an initial form of heterogeneity of the beliefs is necessary to usefully explore the 
dynamic properties of this model. Indeed let us suppose that all the agents initially 
form the belief that their opponents play M. Their best reply, conditionally to this 
initial belief will precisely consist in playing M, which will reinforce the overall 
initial belief of these agents. The initial beliefs of an agent can be interpreted as its 
“cultural” heritage and its updated beliefs as the product of "the history" of its last 
meetings (a “historical” form of interactional heterogeneity, since agents' histories 
differ from one to another). Let us note that in the AEY model, the agents do not 
have common beliefs nor beliefs upon the beliefs of other agents, but only about the 
distribution of strategies. When the beliefs of the agents are located in the same zone 
of the simplex (for example, “M”), they are in a weak sense “shared beliefs”, 
because their best response is the same “M”, but this situation is not recursive and 



agents have not common beliefs. Finally, using the results of Young [YOU 93], the 
authors show that the only stochastically stable solution [FOS 90] corresponds to a 
situation where almost all the agents play “M”. 
 

 
The mixed strategic equilibrium is common 
to theses three « frontiers »: 

σ = (14/35, 6/35, 15/35) 

Figure 14.3: Agent’s belief representation in a simplex 

In a second time, the authors introduce two types of agents, differentiated by an 
observable external sign (a tag) which enables them to be identified (grey and black 
in our simulation). The authors assume that this sign does not have any intrinsic 
significance (completely meaningless). 

However, the agents memorize the sign of the opponents whom they met and 
calculate the average behaviour corresponding to each type. There are thus two 
groups, determined beforehand by the tags, but this is not sufficient to cause a 
differentiated behaviour sensitive to tags, which could result in a shared belief on the 
behaviour of the members of these groups. However, in this model with two tag 
types, beliefs about the opponent's strategy may diverge depending on the 
opponent's tag, leading to between-types (grey against black, Figure 3, right) and 
within-type (grey against grey or black against black, Figure 3, left) responses. By 
definition, the formation of “classes” corresponds to the relative stabilization of 
distinct beliefs based on the group, leading to an equitable intra-group behaviour 
(within), and an unfair share between classes (the opposite case exists, but can be 
regarded as pathological). In the situation displayed on Figure 3 left, grey dots show 
equitable behaviour (they play M) when encountering agents of their kind (within = 
intra-group), whereas black dots do not (but they have moved closer to the zone of 
equity). The situation displayed on the right shows that black dots have the belief 
that grey dots adopt in the majority of cases a “dominated” behaviour (L) and their 
best response thus consists in claiming a large share (H). Conversely, grey agents 
have the belief that black agents preferentially show a “dominating” behaviour (H) 
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and their best response then consists in adopting a dominated attitude by accepting a 
small share (L). Therefore, both beliefs reinforce each other. 
  

 
Figure 14.4: Simplexes Within (tag) - Between (tag) and emergence of classes 

source: simulation on Moduleco-MadKit of [AXT 01] 

In the model with tags, (as in the case without tags), the stochastic process is 
ergodic and the only stable regime is the “equitable” one: MM. More specifically, if 
the length m of the agents' memory and the ratio of the number of agents N to this 
length (N/m) are “sufficiently large” while the trembling hand effect remains 
“sufficiently weak”, the ergodic (invariant) probability to be in the equitable area is 
high. However, if m is large and N small, the inertia of the system, (i.e. the time 
before reaching or leaving an area) can be very important (“broken ergodicity” see 
[PAL 89].). This is true in particular for the transition from the mode with class 
towards the equitable standard. 

What does occur in the regime with class? The uneven distribution between 
groups is an unstable attractor in the sense of [FOS 90], but the system can converge 
towards this state and remain stable for a rather long duration (due to broken 
ergodicity). A typical stabilization corresponds to the situation where the players are 
equitable within their group and inequitable in relations between groups. Let us 
consider the situation represented on figure 14.3. When the black players are 
“aspired” in the basin of attraction of the equitable strategy, the agents play almost 
all “M” in the games within the group. Between groups, on the basis of their 
observation, the black agents have the common belief that the grey agents play 
mainly “L” Thus, their best reply is to play “H”. The grey agents have the opposite 
beliefs. In all cases, these beliefs are not founded on belief in a common strategy of 
the members of the opposite group, identified by a specific tag, but on a statistical 
inference on the behaviour of a sample of agents characterized by their tag which 



thus defines a group only as the set of its members and not as a “social object” [PHA 
07]. The situation is (more easily) reversible precisely because the beliefs of the 
agents remain a sample of individual evaluations rather than on a representation of 
the behaviour of the group as such [DES 06]. 

Exercise 14.1. Build on the space (m, ε) a statistical distribution of the transition 
duration towards a stable state around the attractor “MM” from the 2 perspectives 
(between, within), with initialization on the axis H-L. 

In these two cases, we referred to the emergence of some order which was not 
initially and explicitly contained within the functioning of the system: segregation in 
the first case, dominant/dominated categories by the agents themselves in the second 
case. Although, the term emergence is used in both cases, it is not clear at that stage 
whether it is really emergence, because in a sense the system has been made for such 
an order to occur, or whether it is the same kind of emergence. These questions shall 
be given some answers in the next sections. 

14.3. Characterizing emergence 

In Philosophy, emergence has a long history, from Mill's chapter: “Of the 
Composition of Causes” in its System of Logic (1843) to the contemporary debates 
about the philosophy of mind, known as "the mind - body problem". For a synthesis, 
see among others: [BEC 92], [MCL 92], [MCL 97]. Philosophical emergentism 
deals with the questions of novelty, unpredictability, reductionism and holism. 
Lewes [LEW 75] for instance places emergence at the interface between levels of 
organisation. For descriptive emergentism, the properties of the “whole” “cannot 
even in theory, be deduced from the most complete knowledge of the properties of 
[the parts] in isolation” [BRO 25, Chapter 2]. This definition is usually taken as a 
characterization of complex systems. Emergent properties result therefore also from 
the relations between parts, and in some cases from some irreducible macro causal 
power from the system itself (i.e. downward causation). We notice that the relational 
properties that structure the system are neither at the level of the whole nor at the 
level of the parts, but are constitutive of both. In agreement with the questions raised 
in Figure 1, one can view emergence as a process at the interface between two levels 
of organization (micro / macro). Thus, Bedau distinguishes two hallmarks of how 
macro-level emergent phenomena are related to their micro-level bases. Emergent 
phenomena are dependent on (constituted by, and generated from) underlying 
processes, and are (somehow) autonomous from these underlying processes [BED 
97, p. 375]. 
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14.3.1. Varieties of Emergence: Some conceptual issues from the philosophic 
debate 

For the purpose of this paper, we rely on the distinction, introduced by [LAB 
96], [FER 97] and developed by [MUL 04] in the field of multi-agent systems, 
between “weak” and “strong” emergence. The latter refers to a situation in which 
agents are able to witness the collective emergent phenomena in which they are 
involved, which opens the road for both upward and downward causation. We shall 
explore the various meanings that can be given of this distinction between weak and 
strong emergence. 

In the philosophical debate around the definition of emergence, all authors 
consider downward causation and irreducibility as necessary conditions for strong 
emergence. According to downward causation, the behaviour of the parts (down) 
may be determined by some properties or behaviour of the whole (top). For instance, 
parts of the system may be restrained in conformity with some rules given at the 
system level. Causation would come “downward” according to a holistic principle 
rather than “upward” (from the bottom up). The debate is about reductionism. Some 
authors consider irreducibility as a necessary condition of emergence, other do not. 
As a consequence, there is no unified definition of weak emergence. 

As an example, Bedau [BED 97],[BED 02] proposed to distinguish different kinds 
of emergence: “nominal”, “weak” and “strong”, and Gillet [GIL 02a],[GIL 02b] 
distinguishes “weak”, “ontological”, and “strong” emergence. For Bedau, the 
broader (weaker) form of emergence is called “nominal”. Nominal emergence 
concerns the existence of some macro-property that cannot be a micro property. 
Each level has its specific distinct role and properties: “macro-level emergent 
phenomena are dependent on micro-level phenomena in the straightforward sense 
that wholes are dependent on their constituents, and emergent phenomena are 
autonomous from underlying phenomena in the straightforward sense that emergent 
properties do not apply to the underlying entities” [BED 02]. Under this latter 
condition, strong emergence is the opposite of nominal emergence, as in this case, 
emergent properties have irreducible causal power on the underlying entities: 
“macro causal powers have effects on both macro and micro levels, and macro to 
micro effects are termed downward causation” [BED 02]. For Bedau, weak 
emergence is a subset of nominal emergence for which the emergent phenomenon is 
not easy to explain, according to Simon: “given the properties of the parts and the 
law of their interactions, it is not a trivial matter to infer the properties of the whole” 
([SIM 96], p. 184 quoted by [BED 02]). Accordingly, for Bedau, weakly emergent 
phenomena are those which need to be simulated, to be revealed: “Assume that (a 
macro-state) P is a nominally emergent property possessed by some locally 
reducible system S, then P is weakly emergent if P is derivable from all of S’s micro 
facts but only by simulation”. According to the non-trivial (surprising) dimension of 



emergent phenomena, the need for simulation seems to be a transitory epistemic 
criterion only. If, in a context of discovery, computer simulation reveals some new 
emerging patterns, this is not a sufficient condition to have no other way forever. 
Later justification by some explanatory formalism is a possible outcome. Thus, 
could a surprising (weak) emergent phenomenon become a “simple” (nominal 
emergent) one? 

Stephan [STE 02a], [STE 02b] proposes an interesting discussion on the 
difference between weak and strong forms of emergence in a larger framework, 
using the difference between “synchronic” and “diachronic” emergentism (see also 
[RUE 00]). In synchronic emergence, a macroscopic emergent phenomenon can be 
explained by the current (synchronic) interactions of the interrelated microscopic 
entities. In diachronic emergentism, the emergent phenomenon appears across time 
by observing in a diachronic perspective the sequential adaptation of microscopic 
entities. The centre of interest is then the evolution of macro structures, and not only 
the occurrence of a particular structure. As underlined by Stephan [STE 02b] 
synchronically emergent properties include also diachronically emergent ones, but 
not conversely. 

For instance, in a Wolfram’s one-dimensional network of automata [WOL 84], a 
specific configuration of the network emerges at each step from the value of the 
automaton and the structure of their relations at the previous steps (synchronic 
emergence). In some cases, identified by both [WOL 84] and [LAN 84], the existence 
of an attractor drives the system towards a particular stable configuration (fixed 
point regular cycle, see Chapter 10 section 2.2.). In some others cases, called by 
Langton “the edge of Chaos” [LANG 98], the evolution of the states of the systems, 
step by step, generates a particular structure, such as the Sierpinsky’s triangular 
structures (Chapter 10 Figure 10.7). This structure is only observable from a 
diachronic perspective, and results from the succession of synchronic emergence of 
macrostructures due to the local interaction of microstructures (namely, automata) 
within the specific one-dimensional nearest-neighbour interaction. 

 
 Synchronic 

determination 
Diachronic 

determination 
 

Weak 
(reducible) 

weak emergentism weak diachronic 
emergentism 

Strong 
(irreducible) 

(strong) synchronic 
emergentism 

strong diachronic 
emergentism 

| 
Irreductibility 

 
 ─  Novelety    

Figure 2: Irreducibility and novelty in emergent phenomenon for Stephan 
(adapted from [STE 02b]) 
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For Stephan [STE 02a] the weaker version of emergentism (weak emergence) 
can be characterized by three features. First, following the physical monism thesis, 
only physical entities can bear the emergent properties or structures. Secondly, 
emergent properties or structures are attributes of the system itself, and cannot be 
attributed to some system’s part. Thirdly, the principle of synchronic determination 
implies that all properties of the system nomologically depend on its micro-
structures, namely, the parts and their relations. Stephan [STE 02a],[STE 02b] 
claims that numerous formal approaches to complex systems, connectionism and 
cognitive science can be related to weak emergentism. Figure 2 shows a cross 
perspective on Synchronic/Diachronic - Weak/Strong emergence, adapted from 
([STE 02b]- without the case of unpredictability). 

To summarize, in the philosophic literature, while both downward causation and 
irreducibility are generally considered as necessary conditions for strong emergence, 
the definition of weak emergence remains unclear, and depends on the author. For 
some of them, a necessary condition of emergence is irreducibility, and for [STE 
02a], [STE 02b] reducibility corresponds to the case of weak emergence. The 
relevant question seems then to be: what is the framework of reference for the 
reducibility criterion?  

According to Bunge [BUN 77], [BUN 04], a formal definition of emergence 
allows us to answer to this question. Unfortunately, various attempts have been 
made to define emergence in an ”objective” way, driving to various criteria. Some 
definitions refer to self-organization [VAR 91], to entropy changes [KAU 90], to 
non-linearity [LANG 89], to deviations from predicted behaviour [ROS 77], 
[ROS 78], [ROS 85], [CAR 91] or from symmetry [PAL 89]. Other definitions are 
closely related to the concept of complexity [BON 95b], [CAR 91], [KAM 91a], 
[KAM 91b], see [BON 95a] and [DEG 06] for a survey). 

Although these definitions make use of concepts borrowed from physics and 
information science, they all involve inherently contingent aspects, as the presence 
of an external observer seems unavoidable. To go beyond this problem the definition 
of emergence needs to be related both to a particular formalism, and to a particular 
system of observation. This allows us to encompass the problematic definition of 
weak and strong emergence, by defining emergence as an irreducible phenomenon 
from the standpoint of a particular formalism, including a particular observation 
system, and to define strong emergence by the downward causation inside this 
framework. 



14.3.2 Emergence as a phenomenon related to an observer (1) formal definition 

The unavoidable presence of an observer does not preclude the possibility of 
extending the definition of emergence to include non-human observers or observers 
that are involved in the emerging phenomenon. In our quest for “strong emergence”, 
we wish to assign the role of the observer to elements of the system itself, as when 
human individuals become aware of phenomena affecting the whole society. This 
kind of self-observation is only possible because what is observed is a simplified 
state of the system. Emergence deals precisely with simplification. 

Ronald and Sipper [RON 01] introduce a new approach called “emergent 
engineering”, in order to get a controlled notion of the above-mentioned concept of 
“surprise”. This approach opposes the classical engineered automation, based on 
unsurprising design, and the biologically inspired automation system, which allows 
the possibility of “unsurprising surprise”. Many engineered emergent systems are 
based on this concept (e.g. [VAA 94], [MUL 04]). We do not deal directly with 
emergent engineering, but we discuss the framework used by this author, based on a 
specific formal test of emergence, previously presented in [RON 99]. This test of 
emergence involves two functions, which can be assumed by the same individual or 
by two different persons: (1) a system designer and (2) a system observer. An 
emergent phenomenon can be diagnosed by combining the three following 
conditions (from: [RON 01], p.20) 

1 – Design. The system has been constructed by describing local elementary 
interactions between components (e.g. artificial creatures and elements of the 
environment) in a language L1. 

2 – Observation. The Observer is fully aware of the design, but describes global 
behaviour and properties of the running system, over a period of time, using a 
language L2. 

3 – Surprise. The language of design L1 and the language of observation L2 are 
distinct, and the causal link between the elementary interactions programmed 
in L1 and the behaviour observed in L2 is non-obvious to the observer- who 
therefore experiences surprise. In other words, there is a cognitive dissonance 
between the observer’s mental image of the system’s design stated in L1 and 
its contemporaneous observation of the system’s behaviour stated in L1. 

The question is then how easy it is for the observer to bridge the gap between L1 
and L2. The authors use artificial neural network classifiers to evaluate this gap. 
Within this framework, an “unsurprising surprise” can be defined as an “expected” 
surprise. This question is exemplified later, within the [BON 97] framework of 
emergence as reduction of complexity within the observation system. 

The framework of [RON 99],[RON 01]  together with Forrest's definition of 
emergent computation [FOR 90] allow us to define emergence in SMA as occurring 



From networks of automata towards agents based models 13 

between two organization levels [MUL 04], distinguishing the process itself and the 
observation of that process. The process concerns the evolution of a system formed 
by entities in interaction using a language L1. These interactions may generate 
observable epiphenomena either stationary or dynamical, taking into account 
respectively the synchronic and diachronic dimensions of emergence. At the 
observation level, epiphenomena are interpreted using another language L2. Finally, 
emergence is defined as a particular relationship between the two languages where 
L2 is not compositionally reducible to L1 in the sense of [BUN 77]. A good example 
is the game of life where the cells of a cellular automaton have two possible states 
(dead or alive) and the evolution depends on the neighbours’ states (L1). Some 
regular phenomena like the “glider” can appear as objects moving on the grid with 
their own laws (L2). Notice that there are no objects moving anywhere in the cellular 
automaton but just fixed cells changing states. L2 is neither predictable nor reducible 
to L1 in any way. This account is stronger than the notion of weak emergent 
phenomenon in the sense of Bedau [BED 97], [BED 02] by adding the intrinsic 
irreducibility of the two description languages to the necessity of simulating,. For 
example, according to [BUN 77], the temperature is not emergent from molecular 
movements because it is reducible to the average kinetic energy of the system. 
Accordingly, most phenomena described by statistical mechanics are not emergent 
in the sense of Bunge. For us weak emergence arises when the observer is external 
to the system, while strong emergence arises when the agents involved in the 
emerging phenomenon are able to perceive it. In this latter configuration, the 
identification of epiphenomena by agents interacting within the system involves a 
feedback from the observation to the process. There is a coupling between the 
process level and the observation level through the agents because the agents are 
using both L1 and L2. This form of strong emergence is thus immanent in such a 
system. This definition is directly related to the role of cognitive agents for 
downward social determination as pointed out by [CAS 00]. In order to characterize 
this explicit description of how downward causation may occur, we call “M-Strong” 
the strong emergence in this sense [MUL 04].   

To summarize, if there is M-Strong emergence, the system becomes reflexive, 
through the mediation of the agents. 

(A) Agents are equipped with the capacity to observe and to identify a 
phenomenon in the process which represents the evolution of the system in 
which they interact. This capacity of observation and the target of such 
observation must then be sufficiently broad to encompass the phenomenon as 
a global one. 

(B) The agents describe this epiphenomenon in a language other than the one 
used to describe the process. 

(C) The identification of an emergent epiphenomenon by the agents involves a 
change of behaviour, and therefore a feedback from the level of observation 
to the process. 



Additionally, [MUL 04] insists on the role of the environment as a mediation 
between the process and the observation of the process. Trivially, an observation is 
based on perception and perception is always perception of physical phenomena or 
states (even sounds). Downward causation is only conceivable when the emergent 
phenomena generate physical changes which can influence the components of the 
system. This account further distinguishes two kinds of downward causation, a local 
one and a global one. In the first case, a global phenomenon is produced but only a 
part of it is locally perceived, e.g. the global structure of a termite’s nest which only 
locally influences movements and work sharing among the termites. It is a case of 
weakly emergent downward causation. In the second case, the global phenomenon as 
such is globally perceived as it would be the case if each termite had a map of the 
whole nest. Only the latter case is considered as strong emergence. Further more, 
[LAB 96], describes how an interaction structure can actually elaborate information about a 
global state of affairs towards a single agent. Accordingly, it is a strong emergence case 
because there is a real feedback of the global state on the local behaviour. However, only an 
external observer can actually interpret the local interaction as carrying information about 
some state of affairs. In other words, the agents are not aware of the downward causation. 
There is strong emergence but no reflexivity. As the feedback is external to the agent but 
internal to the collective this allows the emergence of fully “social” relationships (see 
Appendix 2, § A2.3.1) 

14.3.3. Emergence as a phenomenon related to an observer (2) quantitative 
definition 

This section proposes to seek a formal definition of emergence. The aim is not to 
encompass all the richness of the concept in a single formula, but at least to capture 
the gist of what is common to all preceding notions that pertain to emergence. 

Emergence concerns phenomena that become suddenly perceptible, that are 
novel, that elicit surprise, that undergo a change of nature, that were unpredictable in 
the first place and must be discovered. Implicit in all these aspects is the existence of 
two successive observation times. The temporal change may be physical, as when 
the system’s evolution undergoes a transition phase; the change may result from a 
perspective shift, for instance when one goes from the single agent’s behaviour to 
the behaviour of the collective; the change may be epistemological, when the 
observer adopts two successive descriptions of the same collective phenomenon. A 
system that shifts into a chaotic behaviour for a definite value of the control 
parameter is an example of the first case. The formation of a price in economy, or 
the regular 2-D pattern formed by a 1-D cellular automaton are examples of the 
second case; emergence that takes the form of a discovery or that requires a change 
of description language can be seen as examples of the third, epistemological, case. 
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Emergence is also supposed to be a sharp rather than a fuzzy phenomenon. We 
may give an account of this by saying that the two observational times may be 
arbitrarily close to each other. If we note them t1 and t2, then their difference ∆t may 
be arbitrarily small. 

The next question is to know what happens between these two successive 
observational times that characterize emergence. If the question is to know what 
emerges, the most general answer is a structure. The only thing that cannot be said 
to emerge is noise. The system at date t2 is characterized by some structural aspect 
that was absent from the same system at date t1. The Sierpinsky’s triangular pattern 
of Figure 10.7 (Chapter 10) is absent from the one-dimensional state and from the 
rule of the cellular automaton, whereas it is obvious in the diachronic perspective in 
which all successive states are displayed one after the other. Not all suddenly 
appearing structures are emergent, however. Every time a new picture appears on a 
computer or a TV screen, new structures appear that would hardly constitute 
examples of emergence.  

Another necessary ingredient of emergence is the pre-existence of a collective: 
molecules in a gas, economic actors, agents in a simulation, pixels in an image, or 
starlings in a flock. This requirement is inherent in the observation that emergence 
must occur at the interface between two organization levels. The emerging structure 
is therefore composed of a number of identical elements. If we refer to Michael 
Leyton’s theory of shape [LEY 01], such a structure results from the transfer, 
through a group of transformations, of a lower-level structure. According to Leyton, 
our visual system analyses a cloud of regularly spaced out starlings, by transferring 
one single starling through a group of integer translations through space. Transfer 
would be the only way for us to perceive a set of objects as an integrated structure. 

A suddenly appearing collective structure still does not make up a case of 
emergence. The trivial cellular automaton that merely copies its current state 
produces a two-dimensional picture of parallel stripes that is highly predictable and 
thus can hardly be seen as emerging. Unexpectedness is a key ingredient of 
emergence. We capture this idea with the following definition of emergence [BON 
97]: 

E = Cexp – Cobs  [14.1] 

Emergence E is quantitatively defined as the difference between the expected 
complexity Cexp of the system and its actual, observed complexity Cobs. Complexity 
here means cognitive complexity [DES  06], i.e. the size of the smallest cognitive 
description of the system that is available to the observer. This concept is an 
instantiation of the general definition of the Chaitin-Kolmogorov complexity [LIV  
93]. The cognitive complexity of a given structure may be assessed, for instance, by 



recursively summing up the complexities of the different transfer groups that, in 
Leyton’s account, make up that structure. Highly structured scenes have therefore 
lower complexity. The fact that some structure σ is emerging translates into the fact 
that Cobs is small. The fact that σ is unexpected means that E is positive. Emergence 
demands several additional properties: that σ be a collective structure, that Cexp be 
extrapolated from the complexity of the system at time t1 while Cobs is its complexity 
at time t2, and that ∆t = t2 – t1 can be made arbitrarily small.  

As we see from (1), the intensity of emergence rises with the amplitude of the 
complexity drop. In the case of the trivial cellular automaton, there is no emergence: 
the observed pattern is simple and highly structured, so Cobs is small; but Cexp is 
small too, thanks to the simplicity of the null rule. Both Cobs and Cexp amount to the 
complexity of the initial one-dimensional pattern plus the complexity of the 
translation group, and E is zero. The recursive triangular pattern of Figure 1, by 
contrast, as far as the observer cannot anticipate it from the initial state and from the 
rule, is highly unexpected. An observer who is not used to cellular automata may 
anticipate a visual complexity which is Cexp = C0+nCR, where C0 is the complexity 
of the initial pattern, CR is the complexity of the rule and n is the number of time 
steps. The recursive triangular pattern has a much lower complexity, though. It 
results from the copy, on each scale, of the same triangular shape, and its complexity 
is the complexity of the simple recursive procedure that generates it in a two-
dimensional plan. The contrast between Cobs and Cexp is thus high and emergence 
can be said to occur for that observer. 

Emergent phenomena can be usefully described in a two-level architecture, 
where elements of the collective form the lower level of organization and the 
collective itself is detected at the upper level. These levels have no objective 
existence, as they pertain to the same physical system. They result from the 
detection abilities of the observer. The detected object at the upper level is 
composed of objects of the first level. Correspondingly, the upper level detector is 
triggered by the activity of lower-level detectors. A human observer may see a set of 
starlings as a moving flock because he or she can detect isolated starlings and 
because he or she is able to detect their coordinated movement.   

Let us call s the emerging phenomenon, {di} the set of lower-level detectors and 
D a higher-level detector. Before emergence occurs, the expected complexity may 
be written: 

C(s & {di}) = Σi [C(di) + C(s|{di})] 

The notation C(a|b) means the complexity of a when the description of b is 
available. In our example, the {di} may refer to the detection of single starlings and 
of their movement, in which case C(s|{di}) is zero, as the {di} are sufficient to 
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account for the ornithological scene. Let us suppose that a new detector is taken into 
account. The expected complexity becomes: 

Cexp = C(s & D & {di}) 

Suppose the scene is described using D first. Then, the actual complexity 
becomes: 

Cobs = C(D) + Σi C(di|D) + C(s|D & {di}) [14.2] 

Most of the time, Cobs = Cexp, which means that the complexity of the new 
detector compensates for what is gained by using it. In our example, looking at a set 
of a few starlings flying independently and considering it as a whole leads to no 
complexity decrease. If, however, D subsumes some of the di, then C(di|D) becomes 
small or even zero, and Cobs gets significantly smaller than Cexp. This is where 
emergence occurs. In our example, D may be the ability to perceive the coordinated 
movement of the flock. When D is active, most of the starlings’ individual 
movements become predictable. This sudden upper-level pattern recognition lowers 
the overall complexity according to the preceding formula, giving rise to computable 
amplitude of emergence.  

Note that formulas [14.1] and [14.2] make a prediction that is not acknowledged 
in most models of emergence. The emerging characteristic must be simple. The 
simpler it is, the more significant the emergence. In formula [14.2], it is important 
that C(D) be small, as a large value would ruin the emergence effect. As soon as the 
relative movement of the starlings becomes too complex, emergence vanishes. 
Conversely, those who can witness the collective reaction of a starlings flock to the 
attack of a hawk are struck by the emergent evasive manoeuvres of the group of 
birds that moves as a malleable entity that seems to cleverly dodge the predator’s 
assaults. Such a scene is much more economically described at the collective level, a 
fact that the simple short-sighted self-preserving reactions of individual birds did not 
allow to anticipate. 

The requirement that the emerging property be simple seems to be verified in all 
examples of emergence to be found in literature. This statement may be surprising at 
first sight. On certain occasions, emergence seems indeed to involve an increase 
rather than a decrease of complexity. Examples such as bifurcation into chaos come 
to mind: the apparent complexity of chaotic behaviour (for whom ignores the simple 
process that generates it) is huge, compared to usual deterministic trajectories. For 
such a situation to be considered a case of emergence, the chaotic outcome must be 
unexpected, i.e. unique in the set of anticipated outcomes. This uniqueness is what 
makes it simple: a minimal description allows isolating it among alternative 



outcomes. Chaotic behaviour emerges only in such a context, as one remarkable 
instance among a large set of alternatives. 
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Figure 3 - Parallelism between hierarchies: level of description, level of observations 
(detectors) and conceptual level (association concepts- detectors) [DES 05] 

We may wonder how the preceding definition of emergence as a complexity 
shift relates to other definitions reviewed in this chapter. As shown in [DEG 06], the 
change of description language invoked by Müller or by Ronald, Sipper and 
Capcarrère amounts to taking new detectors into account. This language change is 
captured by D in the preceding formula. The ‘non-obvious’ character of the 
behaviour described in the upper-level language, as invoked by [RON 99] 
corresponds in our framework to the unexpected complexity shift. 

Definition [14.1] may also be applied to cases of diachronic emergence. The fact 
that a given structure can only be detected by comparison between successive states 
of the system may be merely ignored when considering complexity shifts. Structure 
and thus unexpected simplicity is discovered in the set of successive time slices. 
Diachronic emergence, according to definition [14.1], occurs whenever the 
complexity of this set turns out to be simpler than anticipated. 

14.4. The road for strong emergence 

The interest of the definition of emergence as reduction of the relative 
complexity in the system of observation does not prejudge the nature of the 
observer: this one can even be an artificial mechanism, equipped with hierarchical 
detectors. Thus, as Dessalles notices [DES 92], a system of observation of road 
traffic, can “see” the emergent phenomenon that human beings will name traffic 
jam, or accidents, simply because it will be equipped with suitable software 
detectors, able to locate these phenomena starting from the positions and speeds of 
the vehicles (this presupposes that the regulator system has an adequate model of 
such phenomena). The fact that an artificial observer can detect an emergent 
phenomenon allows that (1) the system itself or (2) some elements which constitute 
this system are able to retroact on the process. The first case arises each time we 
detect our own mental states. As a neuronal community, our nervous system is able 
to detect the activation of several classes of particular populations of its own 
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neurons. The second case arises when the system consists of cognitive agents. Those 
are then able to locate certain system requirements in which they are immersed 
(strong emergence in the sense of Müller, immergence in the sense of Gilbert). To 
make this conceptualization operational, it is necessary that the agents have sensors 
likely to identify correctly the phenomenon. The definition of the detectors and the 
construction of the hierarchy of levels for the analysis presuppose that the modeller 
designs an integrating model likely “to absorb” the emergent phenomenon. 

14.4.1. Introducing strong emergence in the Axtell, Epstein and Young model 

In the AEY model, the beliefs of the agents limit themselves to build an 
estimator of the expected behaviour of the others by means of the statistical sample 
σim, grounded on the observation of the strategies played by other players in the past. 
The agents have neither belief on the beliefs of the other agents nor belief on the 
behaviour of the group as such. According to Orléan [ORL 04] it is possible to 
qualify as “social beliefs” the beliefs on a regular behaviour of the members of the 
group identified by a tag [PHA 07]. The emergence of such “social beliefs" can 
takes the form of “awareness” by the agents of the existence of a common 
behaviour, characteristic of the members of each group, only founded on their 
membership identified by a tag. This regularity justify the subsumption under a 
general category – say the tag-group, of the inference of the agents’ behaviour by 
means of the statistical sample σim. Such a subsumption results in a reduction of the 
perceived diversity of the agents to their only membership of a collective entity 
identified by a tag supposed to describe them in a sufficiently relevant way to 
rationally base their strategy on a rule of best reply to the opponent’s strategy, 
supposed to be associated with the tag.  

In this section, we suppose, as AEY, that the tag-groups pre-exist and we focus 
the discussion on this problem of subsumption, which results in a qualitative change 
of inferential indicator. The question is the emergence of a belief on a sufficiently 
regular behaviour of the members of the group as such, so that it is superfluous (for 
the rationale for the action) to wonder more about the effective diversity of the 
individual behaviour. For this goal, according to [DES 05], [DES 06], [PHA 07] it is 
possible to formalize this emergence phenomenon as a multilevel cognitive problem, 
conceptualizable as a specific form of “cognitive hierarchy” problem [PHA 04b], 
[DES 07]. 



14.4.2. Interpretation: emergence of a "social belief" as a phenomenon of 
subsumption in the system of observation hierarchy of reflexive MAS 

In [DES 06], the agents minimize a procedural cost of informational treatment 
and it is thus an instrumental design (cost / benefit) which controls the “internal” 
agents‘ behaviour of subsumption. Other approaches of this mechanism are possible, 
but the core problem is elsewhere. In this approach, the agents are endowed at the 
beginning with a minimal capacity of categorization by the design of the model 
which provided explicitly the possibility for the agents to identify the emergent 
phenomenon previously studied by AEY. There is not thus a “surprise” in the sense 
of [RON 99]. The design and implementation of a “pre-wired” multilevel solution 
rather than a generative solution refer to the correspondence between the hierarchy 
of levels of complexity and the hierarchy of encompassed models in [BON 97] 

In the simplest case, the model designer expects the set of relevant structures for 
the problem at the initial stage of design, which concerns the level of the 
formalization of the perceptive and cognitive functions, or at the level of the social 
organization as well. We are thus in an epistemic configuration of the type 
highlighted by Piaget [PIA 70] for so called genetic structuralism. The knowledge 
of the two structures (of departure and of arrival) is necessary to explain the 
transition between these structures. In genetic psychology, this form of structural 
emergence does not raise any problem of principle, since one knows the various 
cognitive structures which are connected. In economy, this constraint is not 
penalizing for retrodiction of always known emergent phenomena, but can be a 
problem for prediction. Another approach would have however been possible, but 
we did not seek yet to explore it. It consists in envisaging generative and flexible 
mechanisms of observation designed right from the start to categorize and simplify 
the practical resolution of the problems to treat, by integrating the possibility of 
having a “surprise effect”. 

14.4.3. Towards cognitive agents 

M-Strong emergence provides a useful operationalizable semantics to model 
artificial societies [GIL 95a]; [CAS 98a], [CAS 98a]. This is the case also even if 
there is a mix of strong and weak emergence in most multi-agent based social 
simulation [DRO 01], [DRO 94] The reflexivity meditated by the agents' 
"consciousness" and/or "awareness" appears to be a determinant characteristic that 
distinguishes systems involving human agents from systems made of non-conscious 
or material entities. In this latter domain, it is interesting to distinguish a hierarchy in 
the cognitive capacity of agents. According to [BOU 93],[PHA 04b] distinguishes 
the following level of cognitive rationality to be used in Agent-Based modelling: 
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(1) A Reactive Agent (RA) has a pre-determined response for a given state of its 
environment. Such an agent may represent both a material entity (such as a 
“spin” in a ferromagnetic set) or all living entities (from the point of view of 
their pre-determined patterns of behaviour - the Darwinian creatures in the 
hierarchy introduced by Dennett, 19962). The level of cognitive rationality of 
such an agent is null, and it can be characterized by its "situatedness", i.e. its 
immediate response to environmental events. 

 (2) A Behavioural Agent (BA) may modify its behaviour for a given state of its 
environment according to the observed (historic) payoff obtained from its 
past actions, following a Skinerian reinforcement learning (e.g. Q-Learning, 
classifiers, etc.). The level of cognitive rationality of such an agent is low, 
and it can be characterized by its adaptability: or "consciousness" in [BOU 
93], [PHA 04b]. 

 (3) An Epistemic Agent (EA) uses a model of its environment to pre-select 
actions. Its level of cognitive rationality may be medium or high, depending 
on the scope of its belief, and on the sophistication of its cognitive tools. So, 
in the hierarchy introduced by (Dennett, 1996) both Popperian and Gregorian 
are different cognitive levels of epistemic agents, and can be characterized by 
"awareness". 

Both Behavioural and Epistemic agents have specific status with respect to the 
cognitive capability to process available information. Both are observers of the 
process which they take part of. A behavioural observer only takes into account 
visible characteristics of its environment that are known to have an effect on some 
personal criteria (viability, hedonic index…). An epistemic observer model in some 
way has a representation of this process and can simulate it, by means of symbolic 
tools. Let us remark that, from this point of view, an external observer (the modeler, 
the experimentalist) have some common features with an Epistemic agent. If we 
take into account the case of downward causation as described by [LAB 96], any 
kind of agent can produce strong emergence as well as weak emergence. The real 
question in this hierarchy is the question of awareness, i.e. of reflexivity on the 
relationship between the local perceptions and some state of affairs. In this direction, 
a Reactive agent has no awareness at all. A Behavioural agent has at least a feedback 
on whether its behaviour is correct (or how much it is) regarding some survival 

                              
2 Dennett [DEN 96] represents the hierarchy of cognitive capacity in the phylogeny of living 
creatures by his “Tower of Generate-and-Test”. At each phylogenic stage, a qualitatively new 
cognitive capacity comes to enhance the existing ones, inherited from lower-level stages. At the 
lowest stage, he places the Darwinian creatures, which have a rigid phenotype. At the second stage, 
Skinerian creatures have a phenotype adaptable through reinforcement-learning capabilities. At the 
third stage, Popperian creatures have some capability to pre-select actions, given the available 
information, coming from inheritance and/or acquisition. At the last stage, Gregorian creatures can 
enhance their individual performances through the use of “tools”. Among the tools, language and 
models are special kinds of mental (symbolic) tools, very important for cultural transmission. 



conditions. Only Epistemic Agents not only behave but have a representation of how 
they behave, hence the possibility to simulate it. Anyway, an important feature is the 
availability of the inferior level of cognition for higher level agents. In other words, 
an Epistemic agent can behave sometimes like a Behavioural agent or like a 
Reactive agent. Another important feature for the emergence in society of the 
cognitive agent, as we discuss it in section 4, is the notion of “social intelligence” 
used in particular by [CON 99] as a property of socially situated agents. Such agents 
are subject to a double-level hierarchy, and therefore a double reflexivity, both with 
the social and the cognitive dimension, based respectively on the awareness of the 
collective actions and of their own actions. Taking into account the cross-feedback 
between social and cognitive dimension of agents at the first level, the second level in the 
cognitive and social dimension can be viewed as an emergent phenomenon grounded in the 
first level interactions. However it is an open question which one comes first as 
illustrated by the still actual debate between [PIA 70] where individual thought 
comes first and Vygotsky [VYG 78] where social reflectivity comes first. 

14.4. Conclusion 

Emerging phenomena in a population of agents are expected to be richer and more 
complex when agents have enough cognitive abilities to perceive the emergent 
patterns and, even before, if the agents are endowed with perception capabilities for 
filtering information at various hierarchical levels as described in 3.1. Such feedback 
loops between emerging collective patterns and their cognitive components clearly 
occur among agents in human societies. They may obey laws that are still to be 
understood. Our aim here is to design a minimal setting in which this kind of strong 
emergence unambiguously takes place. In this context, the definitions of emergence as 
sketched in this chapter, both formal and quantitative, are essential steps towards such 
an aim 
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