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Abstract

In this paper we consider a discrete choice model where heterogeneous agents are subject to
mutual influences. We explore some consequences on the market’s behaviour, in the simplest case
of a uniform willingness to pay distribution. We exhibit a first order phase transition in the profit
optimisation by the monopolist: if the social influence is strong enough, there is a regime where, if
the mean willingness to pay increases, or if the production costs decrease, the optimal solution for
the monopolist jumps from a solution with a high price and a small number of buyers, to a solution
with a low price and a large number of buyers. Depending on the path of prices adjustments by the
monopolist, simulations show hysteretic effects on the fraction of buyers.

1 Introduction

In this paper we explore the effects of social interactions on the properties of a simple market
model, in which the individuals have to make a binary choice (whether to buy or not a single
unit of a good) given a price fixed by a single seller (a monopolist). Each individual has a
reservation price, i.e. the maximum price he is ready to pay for the good, which is the sum of
two terms: an idiosyncratic willingness-to-pay (IWP), and a social component proportional
to the fraction of his neighbours that buy. This last term, known in the economics litterature
as an externality, is the result of mutual interactions between customers. As a consequence,
the market may present complex behaviours [1, 2]. As we show in the following, these
interactions introduce multiple solutions in the demand function and are responsible of the
existence of a transition in the optimal strategy of the monopolist.

There is a straightforward analogy between the customers description and the Ising
model, which has been pointed out in recent papers in economics [3, 4, 5, 6, 7]. Depending
on the nature of the IWPs, the analogy corresponds to two different families of models in
statistical mechanics: either the IWPs are randomly chosen and remain fixed, or they present
independent temporal fluctuations around a fixed (homogeneous) value. The former case
corresponds to a Random Field Ising Model model (quenched disorder). If the distribution
of the temporal fluctuations in the latter is logistic, it corresponds to an annealed, that is
thermal, disorder.

On the supply side, we assume that the monopolist does not know the IWP of each
customer, but is aware of its distribution among the population. He determines the price
that optimizes his profit. Since the demand may be a multiple valued function of the price,
the monopolist’s situation is risky.
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In this paper we consider the case of quenched disorder in which the distribution of the
IWPs is uniform and the social influence is global. The latter assumption is equivalent to
the mean field approximation, and allows us to obtain analytic results. We determine the
supply and demand curves, and the phase diagram, as a function of the average IWP of the
population, and of the social influence strength.

2 Simple models of discrete choice with social influence

We consider a set ΩN of N agents with a classical linear IWP function [8]. Each agent
i ∈ ΩN either buys (ωi = 1) or not (ωi = 0) one unit of the single given good in the market.
A rational agent chooses ωi in order to maximize his surplus function Vi:

max
ωi∈{0,1}

Vi = max
ωi∈{0,1}

ωi(Hi +
∑
k∈ϑi

Jikωk − P ), (1)

where P is the price of one unit and Hi represents the idiosyncratic preference component.
Some other agents k, within a subset ϑi ⊂ ΩN , such that k ∈ ϑi, hereafter called neighbours
of i, influence agent i’s preferences through their own choices ωk. This social influence is
represented here by a weighted sum of these choices. Let us denote Jik the corresponding
weight i.e. the marginal social influence on agent i, of the decision of agent k ∈ ϑi. When
this social influence is assumed to be positive (Jik > 0), it is possible, following Durlauf [4],
to identify this external effect as a strategic complementarity in agents’ choices [9].

For simplicity we consider here only the case of homogeneous influences, that is, identical
positive weights Jik = Jϑ and identical neighbourhood structures ϑ of size n, for all the
agents. That is,

Jik = Jϑ ≡ J/n > 0 ∀i ∈ ΩN , k ∈ ϑi, (2)

2.1 Psychological versus economic points of view

Depending on the nature of the idiosyncratic term Hi, the discrete choice model (1) may
represent two quite different situations. Following the typology proposed by Anderson et
al. [10], we distinguish a psychological and an economic approach to individual choices.
Within the psychological perspective (Thurstone [11]), the utility has a stochastic aspect
because “there are some qualitative fluctuations from one occasion to the next... for a given
stimulus”. In this case, the IWP present independent temporal fluctuations around a fixed
(homogeneous) value (this point of view will be referred to hereafter as the TP-model). If the
distribution of these temporal fluctuations is logistic, it corresponds to an annealed disorder,
that is, to finite temperature [7, 12]

On the contrary, within the economic perspective of McFadden [13] (see Anderson et
al. [10]), each agent has a willingness to pay that is invariable in time, at least during the
period under consideration, but may differ from one agent to the other (we call hereafter
this perspective the McF model). This situation is known in the Physics litterature as a
model with quenched disorder. Even if a seller knows the statistical distribution of the IWP
over the population, he cannot observe each specific individual IWP. In the langague of
interactive decision theory, this seller is in a em risky situation.

Thus, these two perspectives, which differ in the nature of the individual willingness to
pay, correspond to very different theoretical models.

In the TP model, the idiosyncratic preference has two sub-components: a constant de-
terministic term H (the same for all the agents), and a time- and agent-dependent additive
term εi(t) (Hi = H + εi). The εi(t) are i.i.d. random variables of zero mean; in the simula-
tions they are refreshed at each time step (asynchronous updating). Agent i decides to buy
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according to the conditional probability

P (ωi = 1|zi(P, H)) = P(εi > zi(P, H)) = 1 − F (zi(P, H)), (3)

with
zi(P, H) = P − H − Jϑ

∑
k∈ϑi

ωk, (4)

where F (zi) = P(εi ≤ zi) is the cumulative distribution of the random variables εi. In the
standard TP model, the agents make repeated choices, and the time varying components
εi(t) are drawn at each time t from a logistic distribution with zero mean, and variance
σ2 = π2/(3β2), FL(z) = (1 + exp(−β z))−1.

In the McF model, the private idiosyncratic terms Hi are randomly distributed over the
agents, but remain fixed during the period under consideration. There are no temporal
variations: the εi are strictly zero. In analogy with the TP model, it is useful to introduce
the following notation: Hi = H + θi. In the limit of a very large number of customers, this
implies:

lim
N→∞

1
N

∑
i

θi = 0 and lim
N→∞

1
N

∑
i

Hi = H. (5)

The customer’s behaviour, given the price and the choices in his neighbourhood ϑi, is de-
terministic. Agent i buys if:

θi > P − H − Jϑ

∑
k∈ϑi

ωk. (6)

If the θi are logistically distributed with zero mean and variance σ2 = π2/(3β2) over the
population, then the correspondence between the TP and the McF models is better the larger
the number of agents, but it is actually strict only in the limit of an infinite population.
Notice however that, although formulated originally for a logistic IWP distribution, the
McF model may be generalized to any distribution. In the present paper we restrict our
investigation to the McF model and we illustrate its behaviour in the particular case where
the IWPs are uniformly distributed over the population.

2.2 Static versus dynamic points of view

Hereafter, we concentrate on the McF model in the “global” externality case, considering
homogeneous interactions and full connectivity, which is equivalent to the mean field model
at zero temperature in physics.

Within this general framework, we are interested in two different aspects. First we
consider a static point of view computing the set of possible economic equilibria, solving
for the equality between demand and supply. This will allow us to analyse in section 4 the
optimal strategy of the monopolist, as a function of the model parameters.

We consider next the market’s dynamics assuming the usual parallel MonteCarlo updat-
ing rules, which in the models of economic agents correspond to myopic learning with full
information (i.e. based on the last iteration, without memory): based on the observation
of the behaviour of the other agents at time t − 1, each agent decides at time t to buy or
not to buy. We show that, in general, the market converges towards the static equilibria of
the preceding section, except for a precise range of the parameter values where interesting
static as well as dynamic features are observed.

In Physics, these two kinds of analysis correspond to the study of, respectively, the
thermal equilibrium properties within the statistical ensemble framework on one side, and
the out of equilibrium dynamics (which, in most cases, approaches the static equilibrium
through a relaxation process) on the other side.

3



0 1 2 3 4 5 6 7 8
-5

-4

-3

-2

-1

0

1

2

0<η<1

η=1

 j

-a

a

 

 

h-p

j
B

η=0

Figure 1: Customer’s phase diagram in the plane (j, h − p): The region with diagonal stripes corresponds to
parameters for which all the customers are buyers (η = 1). The dark grey region corresponds to parameter values
hindering adoption (η = 0). For j < jB ≡ 2a, there are parameters for which the fraction of buyers grows linearly
with h − p (light grey region). For j > jB the latter solution does not exist, and there is a range of values of h − p
for which the two solutions (η = 1 and η = 0) coexist.

3 Aggregate demand

As discussed in the preceding section, we consider the full connectivity case in the limit of
a very large number of agents. The penetration rate η defined as the fraction of customers
that choose to buy at a given price, η ≡ limN→∞

∑N
k=1 ωk/N , can be approximated by the

social influence term of the agents’ surplus function (eq. (1)): η ≈ ∑
k∈ϑ ωk/(N −1). In the

large N limit, equation (6) may thus be replaced by

θi > P − H − J η, (7)

where θi is a random variable.
For the following discussion it is convenient to divide both sides of the preceding equation

by σ, the variance of the distribution, and consider normalized variables

xi ≡ θi/σ, (8)
p ≡ P/σ,

h ≡ H/σ,

j ≡ J/σ.

Then, the distribution of xi has zero mean and unitary variance. In the illustrations we
consider the uniform distribution defined by

f(x) =
{

1/2a if − a ≤ x ≤ a
0 otherwise (9)

with a =
√

3.
Let us identify the marginal customer, indifferent between buying and not buying. Let

hm = h + z be his IWP. This marginal customer has zero surplus (Vm = 0), that is:

z ≡ p − h − j η. (10)

Thus, an agent i buys if xi > z, and does not buy otherwise. Equations (7) and (10) allow
to obtain η as a fixed point:

η = 1 − F (z) (11)
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where z, defined by equation (10), depends on p, h, j and η.
Since for a given p, equation (11) defines the penetration rate η as a fixed-point, inversion

of this equation gives an inverse demand function:

pd(η) = h + j η + G(η) (12)

where G(η) is the inverse of the complementary distribution function; it satisfies:
∫ ∞

G(η)

f(x)dx = η. (13)

Thus, G(η) is a non increasing function of η. Notice that its derivative satisfies G′(η) =
−1/f(G(η)). Given values of j and h, for most values of p, (11) has a unique solution η(p).
These are the values of η that satisfy p = pd(η) where pd(η) is given by equation (12).

However, for j larger than a critical value jB, that depends on the specific distribution
f(x) there is a range of prices such that, for any value of p within this range, (11) has
multiple solutions. More precisely, if f(x) is monomodal (like in the present case), there are
two stable solutions and an unstable one, and jB = 1/fMax, where fMax is the maximum
value of f(x). The unstable solutions are those with positive derivative of pd(η) (they
correspond to states where the fraction of buyers would increase upon increasing the price).

The upper and lower values, p1 and p2, of the range presenting multiple demand solutions,

p1(j, h) < p < p2(j, h) (14)

are obtained from the condition that eq. (12) has a single degenerate solution η(p). For
differentiable pdfs, it is:

η = 1 − F (z), and
d(1 − F (z))

dη
= 1.

The corresponding penetration depths, η1 and η2 define the limiting inverse demands prices

pl = h + jηl + G(ηl) ; l ∈ {1, 2}. (15)

Note that these limiting prices are not necessarily positive. A negative price gives the
measure of how much the costs should be lowered, or the average willingness to pay h
increased, for the monopolist be able to sell the good.

In the case of the uniform distribution, which is not differentiable and has a finite support,
the above analysis becomes very simple. The critical value of j is ju

B ≡ 2a, where the
superscript stands for uniform. For j < 2a, the inverse demand curve (12) is a non increasing
function of η, but for j > 2a it becomes non monotonic. The fact that ju

B is independent
of η is a degeneracy specific to the uniform distribution, and does not arise with smoother
pdfs.

These results are summarized on figure 1, which presents the customer’s phase diagram
for the uniform distribution.

It is interesting to note that the set of equilibria is the same as what would be obtained
if agents had rational expectations about the choices of the others: if every agent knew
the distribution of the xi, he could compute the equilibrium state compatible with the
maximisation of his own surplus -taking into account that every agent does the same-, and
take his decision (to buy/not to buy) accordingly. For j < jB every agent could thus
anticipate the value of η to be realized at the price p, and make his choice according to (7).
For j > jB, however, if the price is set within the interval [p1, p2], the agents are unable to
anticipate which equilibrium will be realized, even though the one with the largest value of
η should be preferred by every one (since it is a Pareto dominating equilibrium). In game
theory, this situation is typical of coordination games [14].
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Figure 2: Inverse supply and demand curves for different values of h and j.

4 Supply side

On the supply side, we consider a monopolist facing heterogeneous customers in a risky
situation where the monopolist has perfect knowledge of the functional form of the agents’
surplus functions and their maximisation behaviour (1). He also knows the statistical dis-
tribution of the idiosyncratic part of the reservation prices, h+xi. However, the monopolist
cannot observe any individual reservation price. He only observes the aggregate result of
the individual choices (to buy or not to buy), that is, the fraction of customers η, whose
expected value for a given price is given by equation (11). Notice that, as the interactions are
global, in the limit of a large number of customers (rigorously for N → ∞) this is the same
quantity as the one that enters in the term of social influence among customers, equation
(7).

4.1 Profit maximisation

Let c ≡ C/σ be the monopolist’s cost in units of σ (the variance of the distribution of the
IWP) for each unit sold, so that p − c is his (normalized) profit per unit.

Since each customer buys a single unit of the good, the monopolist’s total expected profit
is (p − c) N η. He is left with the following maximisation problem:

pM = argmax
p

Π(p), (16)

where N Π(p) is the expected profit, with:

Π(p) ≡ (p − c) η(p), (17)

and η(p) is the solution to the implicit equation (11). If there is no discontinuity in the
demand curve η(p) (hence for j ≤ jB), pM satisfies dΠ(p)/dp = 0, which gives dη/dp = −η/p
at p = pM . Using the implicit equation (11) to calculate the derivative, we obtain at p = pM :

f(z)
1 − Jf(z)

=
η

p
, (18)

where z has to be taken at p = pM .
Because the monopolist observes the demand level η, we can use equation (11) to replace

1 − F (z) by η. After some manipulations, equation (18) gives the monopolist’s price as a
function of the demand, which may be interpreted as an (effective) inverse supply function
ps(η):

ps(η) = c − η[G′(η) + j]. (19)
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Figure 3: Fraction of buyers η, optimal price pM and monopolist’s profit ΠM , as a function of the average
willingness to pay h − c for different values of the social influence weight j. Left: For j = 3a > jB the fraction of
buyers has two solutions (η = 0 and η = 1 for a range of values of h − c. Center: The line pM

η shows the optimal

prices for j < jB . In the hashed region, these are larger than the prices (shown under the hashes) allowing full
adoption (η = 1), but they maximize the profit. Right: Profits. Dashed lines are the profits corresponding to the
full adoption prices.

We obtain pM and ηM , the corresponding fraction of buyers, as the intersection between
supply (19) and demand (12):

pM = ps(ηM ) = pd(ηM ). (20)

The monopolist’s supply price is the solution of (20) which maximizes his profit. If f(x) is
differentiable, the maximum satisfies

d2Π
dp2

< 0. (21)

In the case of multiple extrema, clearly the one which maximises Π has to be selected.
For j > jB, the monopolist has to find p = pM which realises the program:

pM : max{Π−(pM
− ), Π+(pM

+ )} (22)

pM
+ = arg max

p
Π+(p) ≡ p η+(p), (23)

pM
− = arg max

p
Π−(p) ≡ p η−(p) (24)

where the subscript + (−) refers to the solution of (11) with the largest (smallest) fraction
of buyers.

Figures 2 present two cases of inverse demand and supply functions for the uniform
distribution. The two solutions for j > jB ≡ 2a here are the extreme values η+ = 1 and
η− = 0, at the boundaries of the [0, 1] interval, but for smoother pdfs, these are generally
inside this interval.

4.2 Phase diagram of the monopolist’s strategy

In this section we discuss the optimal supply-demand static equilibria, that is, the solutions of
equation (20) that maximize the monopolist’s profit, in the case of the uniform distribution.
As might be expected, the result for pM depends only on the two parameters h−c and j. As
already seen, the variance of the idiosyncratic part of the reservation prices fixes the scale of
the parameters, and in particular of the optimal price. The calculation is straightforward;
hereafter we summarize the results, presented on figures 3 and 4.

For j < jB, the fraction of customers is a single valued function of the price. The actual
penetration rate is thus determined by the price posted by the monopolist. In this region
there are two (relative) maxima of the profit, one of which has a low price and allows full
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Figure 4: Phase diagram in the plane (j, h− c): The region with diagonal stripes corresponds to optimal prices
for which all the customers buy the product. For j < jB ≡ 2a, the dark grey region corresponds to parameter
values hindering adoption (η = 0). In the light grey region the fraction of buyers grows linearly with h − c, as
can be seen in figure 3.In the horizontally hashed region, the monopolist’s profit has two relative maxima, which
become equal at the line h − c = 3a − 2j. For larger values of h − c there is a price ensuring full adoption. For
j > jB and h − c < a, the penetration rate is a multivalued function of the price. Consequently, the monopolist
has two possible strategies. In the present case of a uniform distribution, due to the discontinuities of f(x), the
solution with a small fraction of buyers is η = 0, and a high-price strategy cannot thus be implemented.

adoption (η = 1). Surprisingly, for a− j < h− c < 3a− 2j, the optimal price is the highest
one, for which η < 1. On the other hand, if j > jB the fraction of buyers is multivalued, and
for a− j < h− c < −a the monopolist has two solutions. However, due to the degeneracy of
the uniform distribution, one of them (the one with the higher price) corresponds to η = 0;
at the lower price there may be full adoption provided that the customer parameters satisfy
h − c > a − j. Otherwise, η = 0. However, even if the inequality is satisfied, the question
of whether the customers will actually buy or not is a coordination problem, whose issue
depends on the dynamics of the adoption process.

The fraction of buyers, the optimal price and the corresponding monopolist’s profit are
represented as a function of h − c on figures 3, for different values of j.

We determined the phase diagram in the case a smooth distribution, namely, the logis-
tic [12]. It presents a richer structure, but with similar features as the uniform distribution
analyzed here.

5 Dynamical features

We shortly discuss here some dynamical aspects, considering a market parallel dynamics with
myopic customers: all the agents make thir decisions at time t based on the observation of the
behaviour of the other agents at time t−1. The adoption by a single agent in the population
(a “direct adopter”) may then lead to a significant change in the whole population through
a chain reaction of “indirect adopters” [8]. Within the McF model, the dynamics for the
fraction of adopters in the large N limit is then given by

η(t) = 1 − F (p − h − j η(t − 1)) (25)

and η(t) converges to a solution of the fixed point equation (11). As we have seen, given
j > ju

B, h and p, two stable and one unstable fixed points appear in (11) for values of j ≡ J/σ
large enough (large J or small σ). The stable solutions correspond to the two possible levels
of η at a given price. Varying the price smoothly, a transition may be observed between
these phases. The jump in the number of buyers occurs at different price values according
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Figure 5: Behaviour of the demand as a function of the price, for social weight values at ju
B and values slightly

smaller and larger, showing that hysteretic effects in the case of finite size systems do not disappear precisely at
j = ju

B , in contrast with the theoretical predictions obtained in the mean field limit N → ∞.

to whether the price increases or decreases, leading to hysteresis loops. In some cases, the
number of customers evolves through a series of clustered flips (between ωi = 1 and ωi = 0),
that we call avalanches (notice that these avalanches are dynamical features that arise during
the updating process, and are not the avalanches referred to in [15], leading to metastable
states. For small values of j there is a single fixed point for all values of P , and no hysteresis
at all [8].

The curves in Figure 5, represent the fraction of customers η as a function of the price,
obtained through a simulation of the whole demand system. The results correspond to
upstream and downstream trajectories, obtained upon decreasing (increasing) the prices
stepwise. We observe a hysteresis phenomenon with discontinuous transitions between the
low and high adoption regimes. Typically, along the downstream trajectory (with increasing
prices) the externality effect induces a strong resistance of the demand system hindering the
number of customers from decreasing. In all these cases, avalanches at which large fractions
of customers change their state occur at the so-called “first order phase transition”.

6 Conclusion

In this paper, we have compared two extreme special cases of discrete choice models, the Mc-
Fadden (McF) and the Thurstone (TP) models, in which the individuals bear a local positive
social influence on their willingness to pay, and have random heterogeneous idiosyncratic
preferences. In the McF model the latter remain fixed, and give raise to a complex mar-
ket organisation due to the corresponding quenched disorder: the McF model belongs to
the class of Random Field Ising models (RFIM). In the TP model, all the agents share a
homogeneous part of willingness to pay but have an additive, time varying, idiosyncratic
characteristic. When the latter is drawn from a logistic distribution, this model corresponds
to a finite temperature Ising model, that is, with an annealed (thermal) disorder. Thus, the
McF and TP models, which are considered as equivalent in the economics literature, have
quite different properties from the physicist’s point of view. In this paper we have discussed
some of them, and their consequences on the market’s behaviour.

Considering that the monopolist optimises his own profit, we have exhibited a new first
order phase transition: when the social influence is strong enough, there is a regime where,
upon increasing the mean willingness to pay, or decreasing the production costs, the optimal
monopolist’s solution jumps from one with a high price and a small number of buyers, to
one with a low price and a large number of buyers.

We illustrated the general conclusion on a simple example where the idiosyncratic part
of the willingness to pay is uniformly distributed among the customers.

We have only considered fully connected systems: the theoretical analysis of systems
with finite connectivity is more involved, and requires numerical simulations. The simplest
configuration is one where each customer has only two neighbours, one on each side. The
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corresponding network, which has the topology of a ring, has been analysed numerically by
Phan et al. [8]) who show that the optimal monopolist’s price increases both with the degree
of the connectivity graph and the range of the interactions (in particular, in the case of a
small world). Buyers’ clusters of different sizes may form, so that it is no longer possible
to describe the externality with a single parameter, like in the mean field case. A more
systematic study of these properties will be the subject of future work.
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